If it's not what You are looking for type in the equation solver your own equation and let us solve it.
41x+20=-20x^2
We move all terms to the left:
41x+20-(-20x^2)=0
We get rid of parentheses
20x^2+41x+20=0
a = 20; b = 41; c = +20;
Δ = b2-4ac
Δ = 412-4·20·20
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-9}{2*20}=\frac{-50}{40} =-1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+9}{2*20}=\frac{-32}{40} =-4/5 $
| 3(2x+5)–3=2(4x–7) | | 13x+42=278 | | 10x3+23x2-65x+12=0 | | x/40=20/100 | | x-(-48)=-51 | | 2x+2-18=16 | | 7+3•-3=x | | –2x2+13x+24=0 | | 2y+4^2=64 | | 1-x=6/8 | | 9x10^-1=x | | 6^3x-22=36 | | 28x+6=10x2 | | x-0.10x=28.80 | | (15x-89)=91 | | x-1=8/6 | | x-6=6/8 | | 200+.25n=425 | | 127+(2x+41)=170 | | 5(2y+3)+10=4(5y-4)+18 | | x×10=-5 | | 52.5=3.5x | | 5+x×10=0 | | 0=43x^2+79x+2089 | | 0=79x^2+43x+2089 | | 14.5*x/2=58 | | (4/5)=(n+3)/(5n)+(1/n) | | 6m=20m-16 | | 4×+2y=27.50 | | R=-10+6r | | 2d2+9d+8=0 | | 4x+2x=20-4 |